Numerical problems on Newtonian relativity

By
Dr. Sunil Kumar Yadav

Assistant Professor
Department of Physics
Maharaja College, Arrah
Bihar 802301, India.

Outline

(1) Question \# 1
(2) Question \# 2

Question \# 1

A train is moving at speed $100 \mathrm{~km} / \mathrm{hr}$ relative to ground along a straight track. A passanger of the train moves forward along the aisle of the train at speed of $3 \mathrm{~km} / \mathrm{hr}$. What is the passenger's speed with respect to the ground?

$$
S^{\prime}-\text { frame }
$$

$$
\longrightarrow u=100 \mathrm{~km} / \mathrm{hr}
$$

$$
\text { Traveller } \longrightarrow v_{x}^{\prime}=3 \mathrm{~km} / \mathrm{hr}
$$

Use classical velocity addition theorem, $v_{x}=v_{x}^{\prime}+u=3 \mathrm{~km} / \mathrm{hr}+100 \mathrm{~km} / \mathrm{hr}=103 \mathrm{~km} / \mathrm{hr}$.

Question \# 2

Question: Two electrons are ejected in opposite directions from a radioactive element at rest in a laboratory. Each electron has a speed 0.65 c as measured by the laboratory observer. Using the classical velocity addition theorem, obtain the speed of one electron as measured from the other.

Use classical velocity addition theorem, $v_{x}=v_{x}^{\prime}+u=0.65 c+0.65 c=1.30 c$. See the result, particle speed is greater than speed of light in free space!

Thank You

Stay Home Stay Safe

